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Abs tract

Information capacity is determined for the additive Gaussian channel

when the constraint is given in terms of a covariance different from that

of the channel noise. These results, combined with previous results on

capacity when the constraint covariance is the same as the noise covariance,

provide a complete and general solution for the information capacity of

the Gaussian channel without feedback. They are valid for both

continuous-time and discrete-time channels, and require only two assumptions:

the noise energy over the observation period is finite (w.p. 1), and the

constraint is given in terms of a reproducing kernel Hilbert space norm.

Applications include channels with ambient noise having unkniown covariance,

and channels subject to jamming. The results for the mismatched channel

differ markedly from those for the matched channel.
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* Introduction

The information capacity of the Gaussian channel without feedback, subject

to a generalized energy constraint, is determined in [1]. In that work, the

constraint is given in terms of the covariance of the channel noise process.

However, there are many situations where one may wish to determine capacity

subject to a constraint determined by a covariance that is different from that

of the channel noise. Examples are jamming or countermeasures situations, or

when there is insufficient knowledge of the natural environment.

Channels where the covariance of the noise is the same as that of the

constraint will be called matched channels; otherwise, the channel is said to

be mismatched (to the constraint). In this paper, the capacity of the mis-

- matched Gaussian channel is determined. Results for a restricted class of

mismatched channels are given elsewhere [21. Various special cases of the

mismatched channels have been treated previously [3] - [5].

The results for the mismatched channel differ significantly from those

S._ for the matched channel. A discussion of these differences follows the proof

of the main result.

An example of the type of problem to which the results given here apply

is the following. Suppose that one wishes to obtain the information capacity

of the additive Gaussian channel with output

Y(t) = fo (B[XI)(s)ds + N(t), t in [0,T]

where (X(t)) is the message, B is a coding function, (N(t)) is zero-mean

- Gaussian noise independent of the message (X(t)), and the constraint is
.. 2

j; jT [B[X t)2dt - P. The solution to this problem is given in

Proposition 1 and Theorem 2 (if the process (B[X](t)) is restricted

to lie in a finite-dimensional subspace) and in Theorem 3 (if there
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is no restriction on the dimensionality of the process (B[X](t)).

If, for example, the signal detection problem of N vs. W is non-singular

(where (W(t)) is the Wiener process), and if rN(t,s) - min(t,s) is a

covariance function, where rN is the covariance of (N(t)), then the capacity

for the unrestricted dimensionality signal will be P/2, the same as if

(N(t)) were the Wiener process.

The relationship with the Wiener process arises because the above con-

straint is given in terms of the norm of the RKHS for the covariance function

min(t's): T 2(t)d t = 11Y[[2 when y is in L [0,T] and 11'[[W is the norm

ml~~) 0 yW~ 2

of the reproducing kernel Hilbert space for min(t,s). When the detection

problem N vs. W is singular, then the capacity can be smaller than, equal to,

or larger than P/2. The expression for the capacity will depend on the

covariance of (N(t)) and the value of P. This dependence of the expression

for the capacity on the value of P does not arise when the channel is matched;

that is, when the constraint is given in terms of the norm of the RKHS of

the channel noise (N(t)). Another major difference arises in this problem

when the signal process is not constrained to lie in a finite-dimensional

subspace. For the matched channel, the capacity then cannot be attained;

for the mismatched channel, it can be attained in some situations and not

attained in others, depending again on the covariance of (N(t)) and the

value of P. In this example, it can sometimes be attained if rN(t,s) - min(t,s)

is not a covariance function; otherwise, it can never be attained.

1-k
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Definitions and Structure

The channel to be considered is the independent additive Gaussian

channel without feedback. The channel output is Y = A(X) + N, where N is

the Gaussian noise, X is the message process (independent of N), and A(X)

is the transmitted signal. The mathematical structure is defined below,

as in [1].

The message X is represented by a probability (measure) px on a measurable

space (H1, B [HI]), where B [H1 ] is a a-field of subsets of H1 . The noise

N is represented by a probability pN on a measurable space (H2, ]B[H 2]). The

transmitted signal A(X) is defined by a IB[HI]/M[H 2] measurable

coding function A from H 1 into H 2. The received signal (channel output) Y

is represented by the probability ,iy on (H2, B[H 2]); since Y = A(X) +N,

.ty(C:) = 'X@w'N {(x,n): .\(x)+n e C} for C in 3[H21 , 'x®1N being the product

probability. The channel probability i' on the product measurable space

(11.xi1. i2, B[tX1121) is defined by pxy(C) = aX®PN{(x,n): (x,A(x) +n) e C} for

C in B[HI xH2]. The average mutual information is then I[viy], where I[b.y1-

if it is false that p) is absolutely continuous with respect to

ixOY (o y -<,XQ'py), and otherwise

It(y= f log I (x,y)d1,. (x,y).

The information capacity is then sup I [pXy], where Q is a set of
Q

admissible pairs (pX,A).
0-

and H will be taken as real separable Hilbert spaces with B[Hi] the

Borel a-field of H.. <" "> will be the inner product for 11, <-,.> the inner
°1 

1

product for I12, I* Il and II1 the corresponding norms. "N will be assumied to have

zero mean and finite second moment: H2  
2dN(X) For H L(,T) or.'- Ix[ < .(x) 2zLOT or Z21

.I..
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this corresponds to an assumption of finite energy. In these cases, PN is

induced by a path map from an underlying probability space (Q,),P):

1 IN(C) = P{f,): N(w) e C} for C in 3[I1 2], where (Nt) is a measurable stochastic

process with almost all paths in If 17 = 2 [0,T] , and (Nt) has zero-mean
2 '

and covariance function rN, then f1 11xl d(x) = rN(t,t)dt.

A covariance operator in 11 is (here) any bounded linear operator on

-$t ii. hich is also symnetric, non-negative, and trace-class. A probability

11 on (112, IB[11I) has such a covariance operator if and only if p has finite

',0.'-- -MicnIAuit ; then, i X l J11 (X) = 'l'':C R . Tr R, wIlCI C R :,l, C

covtariance operator of vi, defined by (assuming now that 11 has zero mean)

x,u x,v J(x).

_1i(, covariance op r:itor of-, will be denoted by RN . One can assume

IA; that range([1.- = 1 , so that is strictly positive and R- exists.

. For 11, = L 2 [O,T], RN can be represented by an integral operator with kernel

,uic t ion c

.\ mealsure I, 'I (H,, IB[H2]) is Gaussian if for every v in fit, the map

x- <x,v' defines a Gaussian distribution on R; i.e., F(a) - {x: <x,v'- a<

defines a Gaussian distribution. It is knoin that there is a 1:1 relationship

between covariance operators in H2 and zero-mean Gaussian measures on 1t2.

22'"-" let R. be a strictly positive covariance operator in H2, with R
2 the

positive square root of R; range(R2 ) is a separable lilbert space under the
* • " 1 1

Sitner product -u,v>R = - 2u, R-v>.

Lj[0,T] is the space of all Lebesque-square-integrable real-valued func-

'tions on [0,T]; L2 [0,TJ consists of the equivalence classes formed from

elements of L2[0,T].

',i.,..-..-
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Constraints

Suppose that iW is a strictly-positive covariance operator in 112. if

11 is infinite dimensional, then range(R%) is a proper subset of H12 and is

a separable Hlilbert space under the inner product

'uv>= < <u,bn><V,bn>/an = RR,2 u, R;I+v>
nV n

where (bn) are c.o.n. (complete orthonormal) eigenvectors of Pg, and an are

corresponding eigenvalues.

If H, = L2[0 ,T], then RW has a representation as an integral operator

with kernel r,. rw can be defined as a measurable covariance function on

[0,T]x[O,T] and then defines a RKHS HW

of functions on [0,T], for which r,, is the reproducing kernel, with inner

product (u,v)f. Let [u] denote the equivalence class in L2[0,T] defined|IV* 2

by the function u in L2 [0,T]. 'TIhn [u] is in range(R) if and only if [u]

is generated by an element u in I-. Moreover, (u,v) W = <[u],[v]> W . Thus,

in all that follows, one can consider L2[0,T] as a concrete example of

I,, identify HW with range(), and consider <. W and 11-11W as the inner

product and corresponding norm for I..

The Wiener process is frequently used to model a white noise channel by

formally considering the "integrated" channel. If W is the Wiener process on
[0,T] , then x in -I1W has RKHS norm x12 [(t)]2 a function x on fO,T]

IVh1  0f~ t1 dt;afucinxo[0T
belongs to HW if and only if x is absolutely continuous, vanishes at the origin,

and has derivative in [[O,T]. In modeling the "integrated" white noise channel

by the iener process, the constraint EIjx(, <PT is then an average power con-

% '" straint on the original signal x. Of course, this constraint has also been

used if (Wt) is the actual (not "integrated") channel noise [6].

A constraint which is appropriate in the case of the observation time

* - . .

,, °



6
[0,T] when (W is stationary with spectral density fw is

f E f- {x d < P

where x is the L2-Fourier transform of the function x. From a result of

Kelly, Reed, and Root [71, for x in L2(= , ),

S2 2,,:. fW(o dA = lim -1Jxrl],.,

ilere xT is the restriction of x to [0,T] and 11-HWT is the RKt-S norm of

IW restricted to [0,T]. If (Xt) is also stationary with spectral density fs'

then with additional assumptions one has

lim 1 E ,iT2 1 fr [fs(X)/fw(X)]dX.
rT_< T V- r-00

In general,

1 iin T F[ '1>,T -L J> [fs(X)/fiV(X)]dX.T. -] F ,T - co

An appropriate constraint is thus

2E PxIA(X) IIW < P (A-1)

.. where R, is a covariance operator in H2. This constraint will be used in

this paper; no other assumptions will be made.

If RW is not strictly positive, then the constraint A-1 can still be

used after replacing H2 with range(R ). One may thus suppose WLOG that

H 2 = range(Rw), so that RI is strictly positive.

Nitual Information and Channel Capacity

From the results of [1], one can limit attention to cases where VA(X)Lis Gaussian with covariance operator
,A(X) = n un  (1)

nn

.
, % -. 
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where -r a- 0 for nl, E' r <c, {u n->l} is a c.o.n. set and (uov)x - <v,x>u.
n nfnln

When P A(X) has (1) for covariance and is Gaussian then [1]

[P' (2)
IK[AYI : ( E) n log [ + Tn].

The constraint A-I can be written as

EI IIR A(X)It" = Trace "(" < (3')

The supremum of (2) subject to the constraint (3') is the capacity

sought and will be denoted as Gw(P); the capacity for the matched channel

(Rw= RN) will be denoted by CN(P).

Proposition 1: Cw(P) is finite if and only if range( c range(R ). This is

equivalent to the existence of a densely-defined self-adjoint linear operator

S in If2 , as follows:

(1) S = U(I +V) U* I

where I is unitary, V is bounded and self-adjoint, I +V is strictly-

R'. -R(I + V,2 *positive, and R N

% (2) I +S is strictly positive and bounded away from zero;

3,() R N = U (I + S) V(A2

Proof: Range(R,) range(R<) if and only if there exists a bounded linear

operator V in H2 such that RW = R2(I +V)RN[8 ]. This is equivalent to

= R(I +V) 2J* for U unitary in H2. The constraint (A-l) is satisfied if

d only if R R' for C trace-class with trace Cs P. Then, ifand nlyif AX ="I"

)range (R)( V) 11*a(i + v) R for bounded V and tnitarvTh oprao +v +V cUGI(I+,'N

U. The operator (I + v)1U*C (I +V) is then trace-class, with trace botnded

above by III +VI P. From [1], C (P) < III+VIlP/2.

. - - . j- " - - " .* % *- , -l. -.. , .
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Converselv, suppose that Cw(P) K . Then every admissible (A,jix)

must satisfy RA = R T for trace T _K [1]. This implies A(X) is in
1 AX

range(R2) a.e., i [9]. If range(P') is not contained in range(R2), then

there exists z in range(N), z = Ru, 1111112 = P, with z not in range(R4).

2 Let A = I and take GX Gaussian with covariance RX = zoz. Then (A, pX)

satisfies (A-i) but A(X) lies outside range(P2) with probability one. Thus,

Cw(P) finite implies range(R) c range(R.

The above proof shows that Cw(P) is finite if and only if there exists

4L
a bounded self-adjoint operator V with 2= R (I +V)U * with U unitary in H2 .

SThppose that R ,2 has such a representation. Since U is unitary and RW

strictly positive, (I+ V) - must exist. Let S = U(I +V)- it * -I, so that

I+ ; UEI +V) J*, (+S)'2 U(I+V) U*. Then, since

P 2 ( + = U(I +V) 2 , it follows that U(I V)' 2] = ii N = (I

so that (1+ S) is defined on the dense linear manifold range(), and

G + S)',- RxI - RlIXU for all x in H2. I +S is obviously strictly positive

on its domain D(S). To prove that its smallest limit point is strictly

positive, one notes that the spectrum of (I + S) is bounded below by

?" 1-2 I I - 11 I xii 1

which issrtl- ostiv , sc V 1 1 - ),-,~ ~ ;!% I, V(~(2,- I cI+ v) 2xI II

Swhich is strictly positive, since V is bounded. This proves (1)- (3)

when Cw(P) is finite; the converse is clear.

.4•



Remark 1: Suppose that H2  L,[O,T] and that the set of admissible (A, n

consists of all such that A(X) is absolutely continuous with L2 [0,T]

derivative a.e. vIX, and E [A(X)] 2(t)dt 5 P. The information capacity

",(P) will then be finite if and only if PN is such that range(R )

contains all equivalence classes in 1,2[O,T] that are generated by abso-

lutely continuous functions with L2[0,T] derivative.

It can often be assumed that the operator S is bounded, from

physical considerations. That is, S will be bounded if and only if

range(n) range(P). In jamming applications, N may have the form

N J +W, where W is the original channel noise and J is a jamming noise

independent of the ambient noise W. Since W will typically include wide-

07 band receiver noise, it is not plausible that the sample functions of the

jamming noise J should be more irregular than those of the ambient noise

WV The path properties of N and W are determined by the properties of

the R S of N and V' (see, e.g., [10]). Thus, if the paths of W+J are

not to be more irregular than those of W, then it is necessary that

range -,i) c range(R.). These statements, which can be rigorously justified,

imply that one can often assume S to be bounded. However, it is desirable

to state the results here in maximum generality, so S will not be assumed

to be bounded. -

When ff. is infinite-dimcrisionial, ) will denole the l:, 1 t11

point of the spectrum of S, the operator defined by (A-2). The limit

points of the spectrum of S consist of all eigenvalues of infinite

- multiplicity, limit points of distinct eigenvalues, or points of the

continuous spectrum [111. A key consequence of 0 being a limit point is

that there is a sequence of o.n. elements (f ) such that 11 (S- 0I)fn [  0
n n

[11, p. 364]. From Proposition 1, 1+ 0 > 0. Moreover, a real number C

with 0< C< 1+ 0 can be in the spectrum of I+S if and only if C is an

,i.envalne of finite multiplicity for I S. Thus, ' is the only possible

...-... C :
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limit point of the eigenvalues of S strictly less than 0. {X n n>l} will

denote the eigenvectors of S that are strictly less than 0; of coarse, this

set can be empty. Similarly, ten, n_!l} will always denote an o.n. set of

Hi2 eigenvalues of S corresponding to the eigenvalues {Xn, nl}: Se = Xnen n-l.
2 n n

The case 6 = oo requires special treatment. It is simplified by the

following result.

Proposition 2: Suppose that 6 = . Then I + V must be compact, and
K

0nil n>l} is an infinite set. Moreover, P + X i < KXK for some finite K,
1

any fixed P > 0.

Proof: 0 = implies that zero is the only limit point of the spectrum of

I+ V, so that I+ V is compact. Since I+V is self-adjoint, this operator

has a c.o.n. set of eigenvectors. I+ V is strictly positive, so that its

eigenvalues are {(l+ Xn) , n>l}, with XI >-l.

K
To see that X i + P < KXK for some finite K, suppose not. Then

1

K
P A - i for all K>I. This cannot hold, since KXl X "

1 1]

(OW can not. formulate the capacity problem in terms of the operator S,

as follows.

Cwv(P) is the supremum of (2) subject to the constraint (3'). Rewriting

(3') in terms of S, and using (1), one obtains the equivalent constraint

n nil ('I+S.-P U l[ _ 1. n
Setting X2  I (I+S) U*u 12,

n n n
%'--- "" 2  -1

CW(P) = suJ)( ) Fn log [1+ Xn (I + y n) ] (4)
n "n {Vn

S. where the supremum is over all sequences (X') and c.o.n. sets 1v n:I
n n

in the domain D(S) of S such that T X P, where (SVn,v n >, n 1

g%
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When S is bounded and compact, the results given here were presented

at the 1983 IEEE Symposium on Information Theory (St. Jovite, Quebec,

Canada) and are partially contained in [2]. An upper bound for the capacity

when S is bounded but not compact has been given by Yanagi [121.

Capacity for Finite-Dimensional Signal Space

Proofs of the following two lemmas are given in the Appendix.

Lemma 1: Let (yn) n<, be any non-decreasing sequence of strictly positive

real numbers. Let (X n ) be any sequence of M real numbers. Fix P >O and

define
SM 2

gT(.'.,P,y) = sup I1 (Yn + Xn)/Yn"
- ?i 1

2 
n

iX: LX n< P1

Then

K K
g(,i,P,y) = (Z yi + P)/(Kyn)

n=l 1
K

where K<xM is the largest integer such that Z y. + P > Ky

Luiquely attained by (Xn) such that

Xn = n<K
S 1

=0 n>K.

eTuna 2: Let (Xi), 1 < i < K, be a non-decreasing sequence of strict Iv po:'i i IVc

real numbers and fix P> 0. Define a sequence (yn) to be admissible if it is

J J K
non-decreasing, ,hyi > 7. for all J< K, and Zyi + P > KYK. Define

~~~.!-. . . .*.-.d-...... -•". .. .- ,-•...-... -..... -. ° ° .... ,*. j
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K K
f K(') =n1 (P+ Z.).)/(Kyn). Then, for any admissible sequence (yn)n=l 1

f _ with equality if and only if yi = X. for all i< K.K.' i --

Corollary 1: Let (vi) and i i ,... ,M be two non-decreasing sequences

of strictly positive real numbers. Fix P >O, and let K be the largest

K
integer < M such that Ly.+ P > KYK. Let (Xn), n = 1,.. ,M, be any sequence

1
M J J

such that Z < P. If E Yi > E v. for all J<K, then
I n=l i=l

.K K1
log I + X2 Yl < E log I(P + vi)/Kv )

n n -i)n=l l n=l L i=1

,ith equality if and only if Yn =Vn for n_<K and

X = ("v + P)/K-n n> K
In

- 0 n>K.

-. i2 -1 K r K
Proof: If log (1 + n > log,[(P+ Zv.)/Kvn)l, then it must also

JNn=1 n=1 L 1I n
K K

strictly exceed (by Lemma 2) Z log (P + i)/(KYn)j. This contradicts
_. .. n=l I

Lerm 1. The conditions for equality follow from lemmas 1 and 2.

Reimark 2: If S is a bounded linear operator with a complete set of eigenvectors-a,-

K K
and non-decreasing eigenvalues 1< 2<*... then z2n< Z <SVn,Vn> for any o.n.

0 1 1
set vk,..,vK and any K>1 [13].

.-,

@ -s,

., 1 - 7 : , , , . ,, , . . ; ' , ; ' ' ¢ ' - . ' - . " £ % . % . . . " . . . .. . , ,
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Theorem 1:

Suppose that It2 has dimension M<. The capacity is then

K
J(P) = )n= log [( ]

1where 2 < .. " , are the eigenvalues of S, and K is the largest integer < M

K
such that 7i+P P>K K*K The capacity is attained by a Gaussian "~A(X) with

11-

covariance operator (1), where un = Ugn and Tn = EL + P - K n] (1 + n) K- for

n< K, T = 0 for n> K, and {n >1} are o.n. eigenvectors of S corresponding

to the eigenvalues (2n). No other Gaussian A(X) can attain capacity. The

same result is obtained if H., has dimension L<- and 1 A(X) is constrained to

nay-, support of dimension M, L.

Proof: Since Ht2 is finite-dimensional, the self-adjoint operator S is

bounded and has a complete set of eigenvectors. From (4),

v(PJ) = s Z log [l+Xn n ] , where n l*<SVn' Vn>' {vnn n<M} is a

c.o.n. set, and the supremum is over all such c.o.n. sets and all (Xn) such
such

that X < P. Since 31 <2< .. <, are the non-decreasing eigenvalues of

.1*J J
S, by Remark 2, F [1 + <Svn, v >1 > E [1 + for all J <M and any, fixed c.o.n.1 n n

set {Vn, n<1}. The expression for Cw(P) and the unique covariance of the

maximizing Gaussian A(X) both now follow from Corollary 1.

Remark 3: The result holds if dim(H2) = L< - and dim[supp(w A(X) t < NI < L,

since in this case S again has M smallest eigenvalues.

egW,
"1% ,% o". , " " " -% .%'- '. '.'"* " ," ...................................-" - ."."," "."." " '-" -'-". -"-. .*-" .""" ".""""". .""" . ""."". 1"-" 1 " ."".. .""".... . .-.. . . ."". " . ..,. "''.-
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11eoren 2:

Suppose that 0<,,, H2 is infinite-dimensional, and support (wA(X)) is

- restricted to have dimension < M < .

(a) If {, n > I } is empty, then C,(P) - (1/2) log [1+ p-(1 + ()-.

Capacity can be attained if and only if S has e as an eigenvalue of multipli-

city > M. In this case c,,(P) is attained by a Gaussian IA(X) with covariance (1),
where u. = Ugi and ( = PM e(+6) for i<M with {gl,.. any o.n. set

in the null space of S- 6I.

- . K
(b) If KAK < KiXi + P < KX+ for some K <M, then the capacity is as in

lhcorem l, with - i i . ,K and can be similarly attained.

(c) Let K = nin(L,,M), where L 1 is the number of eigenvaluc., (X ),of S whose

K
value is strictly less than e, and suppose that P+ A. - KA K' The capacity is

then K KP+? -X0)

y(P) = z log + log i 1
nl 1+n ]

The capacity can be attained if and only if e is an eigenvalue of S

• 4. with multiplicity > NI-K. The capacity is then achieved by a Gaussian with

covariance (1), where un = Ug and T = (), + P -MX + (NI-K)) (1 + X) nIm for n<K,

with Sg,- = Xg n and .. an o.n. set; and with u and{g n' 11 .. 19K se;adwt n Uvnd

n= (P+ -KO)M (I+ 0) for K+1 < n < M, where Svn; -0vn, and VK+ I..vM

is an o.n. set. The sets {U1,... ,uK} and {l,... ,IK} are uniquely defined for

any maximizing (kussian 1 Ai(X)

.%

,li
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Proof: If S > 6I, then S- 81 does not have zero as an eigenvalue.

However, there exist [ill] o.n. elements (fn)in D(S) such that II(S-oI)fnll - 0,

so that <(S-EI)f f 0, <Sfn,f - e, <Sf If > 6 for every n. Thus, for
n' n nn n

.,nuy, 0 there are o.n. elements f ' such that Setting _Y = <SfL,f,

e < 0+, for i< ,M. Using this sequence in (2) and (4), one obtains

I[uyl = (I) Z log [l+zn]
1

log X2 0 - 1 e 2 -1 ]= , log [+ ( () log [1 + (1 +0+ :) .
1 nn-2

The expression on the right of the inequality is maximized, over all 2) such

that "X -: P, by defining X = P/N, n -M. Thus, Cw(P) .)F log [I + (1 + 0+,) PM
in n 1

M
for all E>0, and so CW(P) > ( ) E log [+PM (1+0) 1]. For the reverse

1

inequality, one notes that under the constraint E X IIRN A(X)II2 < p, it is

shown in [1] that CN(P) = (M/2) log (1+P/M). For S>01,

_ (1+09)1 1IP A(X) 11 Thus, E A(X)I 2 P implies

- 2< q~-l rp'~ lo~[1 1, so that
E!NA(X)11! < (1+0)- P, giving Yq(P < log R +M( )

-l -1

C-V(P) = (M/2) log [+P-1 
(1+0)- 1.

If S -6I, with 0 an eigenvalue of multiplicity K, the above argument is

modified in an obvious way (yE= P for i =I,...,min (K,M)) to again obtain

('W(P) = (:I2) log fl+P-l(l+ )-1 1

" lo prove b), the proof of 'Iheorem I is repeated after substituting A

fo" ' i - K+1.

Wr C), suppose that S has K m, eigenvalues X1 <9* <X strictly less than 0

and that :-,. + P K K K W(P) = stp (P) where
" (P] ,v)

'p. ",,'% '# ",' " .*','." '.,.." .. ,. ' ' '€. "•" "%
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Cw(P l ,v) sup Z log [l+Xn (l+<Svn, vn>2)]j'

v = {v, n ,M} is any o.n. set, 0 5P 1 P, and the supremum is over all (X )

K M 2
such that X- < P1 , X . P. From the proofs of Theorem I and part (a

1 1
I+

(',.P _ = ( ) Z log + ( ) fM-K) Iog +

n=l

where J ,-K is the largest integer such that TA. + P> Since this result
1 P

holds for any o.n. set {Vn, n!,M} in D(S), it remains only to determine the value

of P1 that maximizes CIV(PIv) (a differentiable function of P1 in [O,P]). Differ-

entiating, one sees that Cw(PlV) is increasing with P1 so long as

P 1 '[JP + (M-K)(Je - Ei)IR-K+J) -  Since PI < J J+l - EXi , the preceding

inequality is satisfie.l as long as 0M-K+J)j+ 1 - .X. < P+ (M-K)o and this is
1 1

.5
satisfied because P + :'i >  J +l' J+l < 6. It follows that v(PlV) is an

I
K K

increasing function of P1 for P1 < -D i + KXK" Assuming that P1 
> -Xi + KAK,

the maximum of j(Plv) is attained uniquely by P1 = K[KP
:.. _ -(W-K) 7. + (MI-K) Ko].

Using this value of P in the exnression for y(Pl,V), one obtains ,(P) as in

(c). The value of Cw(P) when L=M in (c) follows as in the proof of

Theorem 1. The statemient on attaining capacity follows from the results
of (a) iind (b).

Corollary 2: If 0 =, then Cw(P ) has the value given in Theorem 2(b),

and can be similarly attained.

Proof: Follows from Proposition 2 and the proof of Theorem 1.

S. . .%- . - .... .. -
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Capacity for Infinite-Dimensional Signal Space

Theorems I and 2 give the solution to the capacity problem when the

dimension of the signal space is finite. We now proceed to the case of an

infinite-dimensional signal space.

Lemma 3: Suppose that <o, {n, n_ l} is an infinite set, and P>O. Then

K
+ P+.. n> KXK for all K>l if and only if P> Z (e-X n).

* 1 n K n>l n

K
Proof: It suffices to show that .(Xn -0)+P > K(XK - ) for all K>1 implies

'[ - ] P. Suppose not. Then there exists K>1 and A> 0 such that

K K
P+ 1 -t ) =-L Thus [C - )K+]1 > [-z( n- 0) -P]/K = A/K. Suppose

K+N
- K+pl > <K for 1) < N. Then [- kK+N+] > I (n- 0)- P]/(K+N)

K+N
= - ' ('n - &)i(K+N) > [,5+NA/K]/(K+N) = A/K. Thus, the induction hypothesis

K+l

wvould yield that [ - K > A/K for all N> 1. However, 6 is the smallest

.' limit point of the spectrum of S, and since (Xn) is a bounded infinite sequence,

(:% n) must contain a limit point. Thus, 8- XK+N > A/K for all N> 1 would mean

that (Xn) has a limit point strictly less than e. This contradiction implies

K
that P+(A(X n -6) -A<O must be false.

01

Lemma 4: Suppose that a <-a and S- 0I is negative-definite with an infinite

set of strictly negative eigenvalues

1+0 [P+ (X -0)1
(a) If P > z(e-X) then CW(P) Elog f- + n." - ' 1+0

n n n

SL
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The capacity can be attained if and only if P = F(O-Xn). It is then
n

-. attained by a Gaussian jAX with covariance operator (1), where

un = Uen and Tn = (O-Xn)(l+n
) -1 for all n >_l.

K Txi +P+K

(b) If P <n7(O-Xn), then C(P) = El log 1 where K<- is the
nn n=l K+n)

K
largest integer such that P+ -X  > KX The capacity can be attained

1 n - KK h aaiy a eatie

by a unique Gaussian IAX with covariance operator (1), where u = Uen and

'Ut K

TA. +P+K

T = Kl+Xnt  - 1 for n<K
n

'n =0 for n >K.

Proof: (a). The fact that

2Cw(P) > Z log rI0 + P+ mm

n>l Ll+XnJ 1 + 0

follows from (c) of lheorem 2, letting IM+ in that result. To

prove the reverse inequality, suppose that GW(P) is strictly greater

than its value as given in (a). Then for c in (0,1q(P)) there exists

'. a Gaussian A with covariance Rj, = nT':[R ] @ [RUn. where U n-11
n

is a c.o.n. set, all T >0, FT6!!(I+S)U*uI c P, andn nn

an
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CVP) = 7 log (1+ T) + E. Since E log (1+ T) is non-decreasing with
n I

., for some c >0 there must exist Mc < such that

1 p+ E (Am -0)
19 log (1 + > - lO I + 1 + o (5)

h. The IIS of 5) is tile value of the infornationl when 11 A(X) has cova lial.ic

operator 6

RA(X) =nR N n un

From Theorem 2(c), the LIS (5) can be no greater than

Z log + log i__ 1

1 L n 1 M(l+ 0)

As NM - , this last expression converges upward to RHS (5). Thus, the

ifnequalitv (5) cannot hold.

,To see that the capacity is attained as stated in (a), one notes that

from (2) the Gaussian measure with covariance (1) will achieve capacity

if and only if

" log (l+ ) = log + + (6)
n + n +

and

]1 Znn(1 + tn -P' 7

2the latter requirement following from the definition of (X ), Corollary 1,

- and Remark 1. Both (6) and (7) are satisfied if T = (-A n)(l+A ) for""-"nn n

all n > 1 and Zfl- ) = P. Conversely, if (T ) satisfies (6), then
n n

'{" ~~P + " m .
m

1 + 0 z (T + n + Tnn - 0)/(1 + q) , or P < TT (1 + X),
_n n n n n n n n

with equality if and only if T + X + T = 0 for all n >1. If (Tn).v.n n n n -_

also satisfies ( 7), then necessarily P = (I + X ), and so
n n

T + + rn = 0 for all n >1. Thus, if (r ) satisfies both (6) and
Sn n n n n

( 7), n = Mn)(l+n)- for all n>1, and P =
n
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" ~~ A.KX + P + K

• ... -. , ~b) . cw (P) _" 1 Ilog [ Kl)n 8

)-...
*5~n%. n)

follows from (b) of Theorem 2. Suppose that cV%(P) > MIIS (8.Theni
2by (4) there exists a c.o.n. set {vn, nl} and a sequence (X) withn n

infinite number of non-zero terms (using (b) of Theorem 2) such that

.- is (8) < nElog [I+Xn(+<SVv> (9)
n

with 7X- < P. Since PWHS( 9) is finite and the sum of non-negative
n

terms, there must exist M <-c such that

2 2 -
< r log [1+ (1+ <SV ) > . This contradicts (b)

n=1

of Theorem 2.
[1

Lemma 5: If a<- and S>8I, then Cw(P) --

Proof: G(P) > P(1 + 0) 12-1 follows from part (a) of Theorem 2 by letting

'" - '. To prove the reverse inequality, one notes that for the constraint

lX A(X) 112 < (1+) P, the capacity CN([l+ -I1P) is P(l+ )

[1, Theorem 2]. Since E flR A(X) I" <P implies F I, A(X)II < (+ 0) P,

optimization w.r.t. the former constraint is over a smaller set than w.r.t. the

latter constraint; thus CW(P) < N[(l+ 8)-lP].

The capacitv for channels with an infini te-dimensional signal space

can now be given.

"" " Theorem i: Suppose that 0 <o, 112 is infinite-dimensional, and dim[sunp(i )]

is not constrained.

(a) If Xnn>l} is not empty, and zn - _ P, then

-~ p + m ~
.5w.'" C,,(P) = "n log F4'l+-n + 1 m

,
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(b) If {Xn , n>l} is not empty, and P < En(O-Xn)
, then there exists a

-D. I+P+ KK K
largest integer K such that EZ. + P > KAK, and Cw(P) = log K(I +

K K) W () 1

(c) If {Xn, n>l} is empty, then Cw(P) =2(1+e

(d) In (a), the capacity can be attained if and only if Zn(6-An) =

V 

=

It is then attained by a Gaussian with covariance operator as in (1),

where un = Uen and Tn = (e-Xn)(l+Xn)- for all n !1. In (b), the capacity

can be attained by a unique Gaussian pAX with covariance operator (1),

- - K

Z .+P+K1'
where un = len and 1n = (l+n) - 1 for n<K; T = 0 for n>K. In

n

% (c), the capacity cannot be attained.

Proof: From the preceding, one must find sup En log [1 + n, where (Tn)

is a non-negative summable sequence, subject to the constraint

YnTn [I + <USU*unun>] < P, where {un, n>l} is any c.o.n. set in H., and

Rl= R (I + S) U*, with U unitary.

Let Q be the projection operator onto the (closed linear) subspace spanned

by fUen, n>l}, where {en, n>l} are eigenvectors of S- eI corresponding to

strictly negative eigenvalues. Let Q1 be the projection onto the orthogonal

complement of range(Q) Range(Q) is obviously an invariant subspace for

Uls- r-I)U* and thus for USJ*; since USU* is self-adjoint, i;ange(Q ' is also

t,... invariant forilJ*
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The set of covariance operators T = T U nUn satisfying the above constraint

consists of those T such that Trace T2[Q+ QuSU*Q]T = P1 and

Trace T,[Q1+ QiuSU*QIT -< P-PV' where P1 = PI(T) is contained in [0,P].

Thus, the capacity problem is to determine sup) sup Trace log (I+ T),

where P in [0,P] AI(A 2

A, = AI(P )  {covariance operators T: Tr T"(I + USU*)QT = P}

and

A, = A2 (P1) = {cov. operators T: Tr T2Q (I + iSU*)QT P- Pl.
2- 1

Now, sup sup Tr log (I+ T)
P in [0,P] A1 A 2

< sup fsup Tr log (I+T) + sup Tr log (I+T2}
P1 in [0,P] A1  A2

It is slmn below, that this inequality is actually an equality.

Proof of (a). First suppose that {n, n>l} is an infinite set, and fix

" PI in [0,P]. Suppose that E(e-An) > Pl. By Lenmma 3, there exists a largest

K
integer K such that n P > KAK. Sup Trace log (I+ T) is then (from part.: 1n K' I1(l

A I(P 1)

FK
Ki=l1 1(b) of Lemma 4) E log iKl+ j From Lemma 5,i:- i n=l L ( n)  rmtrn

sup ;2 Trace log (I+ T) = (P-P1)(+9)
-I. Thus, for this value of Pi.

A.(P 1)K 1

K ~ +P1 +K
sup 1 Trace log (I+T) c CX(P1K) - T T log + (P-P1 )(l+0) l
A1 nA2  n=l K(1+n

".

I °%
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'- "d K 1 1
d C+(P1,K) = 2 whose sign is determined by that

7- 1_ -2 +e
+ x. + P+K

r 1.

K K K
of K1 - P1 - since + P + K > 0 Oecause . + NP KA and ,

1 i  - K

P1 + \
A < K+ < KG, so C+ is increasing for P increasing when
i K+1 c+1

K K+1
P KXK+I Define P - \ + (K+ 1) K+1  ThenK- 1 1 1 i=K"

K
"K 1 + KK+ I

2C+(P ,K) = 1 'K+- + 11 K Using the inequalities
n=1 + in

K+2 K+ d K+2 , C+(PK ,K) is seen to be a strictly increasing

funnct ion of K. Since - - P, K(e- ;K) 0 0, and thus

:::-: F K+l1- ,

lim P = lim z (+x.- ) ( (K+lJ(x -Li K+l )j I1

This gives as an upper bound for the capacity, for all P1 such that P1  (e -
n)n

-in C+(pK Fl + +K).' ll+ , -F -"
K nK L L +aL+~ [-(-Y

Since P - Xn), there exist P1 values satisfying the constraint

,-''.' with P1 > z(*;- \nJ. In this case, from part (a) of Lemma 4,
n

" + 0 1P +  (n -',+ P11. 2 o Ll+~nJ ~ Ll~j
"4 -'" =~p .log + I P- + +n -+r

nn n<""" : :n log +  +

- ille last expression is thus an upper bound on C,,(P) for all P1 in [0,P]

V 1.%
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From nart (a) of Lemma 4, this is the value of the capacity when the operator

S- O is negative definite with an infinite set of strictly

negative eigenvalues. Thus, this is the capacity when P1  P, and so (a) is

proved if {An,n>l} is an infinite set.

Suppose next that the set {n ,n>l} is finite, A1 
-  A2 

-< ... - AK < 0.
K

Proceeding as above, for P1 such that P1 + z An < KAK, the upper bound C(P1 ,J)
I K

on the capacity is increased by increasing P1 up to the value P1 - KXK- n A

K1
1f PI + > n KK then from above,

K i= 1 I + (P-P 1 )

C(P'K) = log K + n )

Differentiating w.r.t. P13 one sees that the derivative is positive for

K K
+P K r- O, negative for EX +P -Kn > 0, and so the unique maximum

K
occurs for P1 = y( - xi) This gives an upper bound on the capacity of

K
K l + ) P + Z(Ai-e)

log -I+ A 1
n=1 I nl 1+6

To show that this uper bound is actually the canacity, a sequence (T) of

coVaritance operators will be exhibited, each satisfying the constraint, and

such that sup trace log (I + T,) is equal to the upper bound. Thus, fix
.''.- :. '0, M>K

. 0 such that - l+e. For M > K, define T' by T E TF'HuCfl where
-: n=1 n n n

, ' (n- )(l + ) for I < n <K
n n n

K
P + F(Ai -6)

= for V < n -M

• S' = () • H

- ~*.* ,5 ..~ Jj4.
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Set Un = Uen, n=l,..,K. Choose the o.n. elements u c for n=K+,..,M

such that <USU*un uL> < +c; this is possible for any M, because 0 is
the siallest limit point of the spectrum of S. One now obtains

' I ,M K I +' +! 1

E T [n  + <USUI*Ueu> < 7 (0- A + Z T + 0 + C] P.
-1 n=1 n n=l n

" " K
'Mo reover [- P+ E - )

Trace log (I+ = n1 [
:  E Log [+nj - + i

For fixed c, the limit as M--c of thisexpression is

K
K r1 + el P+ Z(Ai.-e)
Z log + 1

n=l ln 2(1 + E + E)

Since c > 0 is arbitrary, one sees that the sunremum over all c > O, M> K is

equal to the upper bound previously obtained. That upper bound is thus the

capacity Cw(P), completing the proof of (a).

The result of (b) can be obtained from the Droof of (a). Since now

K
-(j- n) > P, there exists a largest integer K such that P+ ZAn > KAK by

11 n

Lemma 3. Choose P1 
< P and proceed as in the proof of (a) to obtain an upper

bound on the capacity of

M' i -+M+P 11 (-: M i~ (P -Pl)

C (PI ,MN) = nEl log j + 1 + 0

,. M
where M is the largest integer (note M <K) such that P + rX > M Defining

_1 jn M

Ol as in the proof of (a), the sequence (C[1,11]) is non-decreasing as 1!

Kincreases, and since K is the largest integer such that P+ > KX o
Pd1n K "~K one has

that C[P,KJ is an upper bound on the capacity. This is the value of the

. capacity, from (I) of Lenma 4, when S-01 is negative definite (i.e., P=PI).

* 4.. (c) follows from Lemma 5.

%e
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.*.. Thf tatement of (d) that the capacity cannot be attained when S- 01 is

non-negative definite (part (c)) can be proved by noting thatk - 2

0..,R = R_(S - O + (l+0)I) U*. Thus !IxlJ2 - R xliR

< (fS - 91 + (1+0)11 -1) IRw xI12 < (1 + 0) Ixl . A solution attaining

2the capacity P/[2(l+e)], subject to the constraint F IIA(x)II < P, would thus
-.. x

* 2satisfy the constraint E liA(x) I1N < P/(l+0); this is impossible, by

[I, Theorem 2].

The statements in (d) on attaining the capacity in narts (a) and (b)

follow directly from corresponding statements in Lemma 4, as follows. The fact

that the capacity in (a) cannot be attained when {Xn ,n!l} is an infinite set

follows from the fact that P1 =P (in the proof of (a)) uniquely gives the

capacity, and this gives the same result as when S- 0I is negative definite.

The fact that the capacity cannot then be attained is contained in part (a) of

Lemma 4. If {Xn,n.:l} is a finite (nonempty) set, then the capacity is uniquely

.-.~_K
obtained by setting P- P1  P+ (n - e), corresponding to the constraint

Trace T;'[ Q+QTJSU*Q']T . Since Q' +Q±tJSU*Q' is non-negative definite,

application of the result for part (c) shows that the capacity cannot be

"" attained. Finally, the statements on attaining capacity in case (b) follow

directly from part (b) of Lemma 4, since the capacity in (b) is uniquely obtained

by setting P1  P, equivalent to S- 0I being negative definite.

Corollary 3: If 0 = , then CGW(P) has the value given in Theorem 3(b),

.t. mand can be similarly attained.

Proof: Apply Proposition 2 and the proof of Theorem 3(b).
•.

. ,'1'''""".''',''-' '. ''.,'.". . .'' '''.''''. ''''.'.'.



27

Comparison of Cw(P) and CN(P)

For the finite-dimensional channel, the capacity CW(P) given in Theorem

-% M
1 is strictly greater than CN(P) (= log [l+ P/M]) if E8i < 0, or if1

K
P+ Ei < 0. q(P) !5 C4 (P) if 0< Pl <  The verification is omitted.

For the infinite-dimensional channel, a general statement can be made if

{Xn~n>_l} is emnty. Then, y(P) > CN(P) if a <0, CW(P) < CN(P) if e >0, CW(P) = CN(P)

if 0 = 0; see Theorem 2 (a) and Theorem 3 (c). Note that CN(P) = P/2 for the

unconstrained channel [1, Theorem 2].

If {X ,n.l} is not empty, then for the unconstrained channel the value of

P -1
C,(P) given in Theorem 3 (a) is greater than ' , using log x 1-x. This

-  inequality can also be shown for the value given in Theorem 3(b), proceeding as

in the proof of part (b) of the Theorem in [2]. Thus, for the unconstrained

channel, Cw,(P) > %N(P) if 0!50 and {n ,nAl} is not empty. A similar result can

be obtained for the constrained channel.

e..

F .-
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Discussion

The mismatched channel differs from the matched channel in several ways.

First, the value of the capacity can be very different, as already seen.

Secondly, the problem of attaining capacity is much more significant. Even in

the finite-dimensional channel the vectors ul,...,u4, must be a specific set of

vectors, not just any o.n. set. If H2 is infinite-dimensional with

dim[supp(pA(X))] < M, the situation is even worse in (c) of Theorem 2. That

is, capacity can then be attained only if S has zero as an eigenvalue of mul-

tiplicity >. M when S f< eI, or of multiplicity > M-Y when S has K < M

K
au < ... < K < e and P + EX >K KX Otherwise, in order to

1

annroach capacity, one will need to put part of the available "energy" P in
elements (Ilen) where (e ) are eigenvectors of S corresponding to successively

smaller eigenvalues. In practical applications, this typically corresnonds to

eigenfunctions at higher and higher frequencies.

For the infinite-dimensional channel without a constraint on dim[supp(pAX),.

again there can be significant differences between jq,(P) and C (P), depending

on f-i; X , nl}. However, in this case one sees a rather different situation in

the problem of attaining capacity. C(P) can never be attained; Cw(P) can be

attained if and only if {f ,n>l} is not empty and P 5< n (O-n).

It may be noted that the results given in Theorem I and Theorem 2(b) are

similar to those obtained in f4, p. 1701, although the developments are quite
.. ..

different. However, these previous results are given in terms of a constraint on

FIIA(X) 112, and assune that the noise variance components can be arranged in

ascending order. This can only be done if the channel is finite-dimensional.

In that case, one can take RW= 1, the identity, and thereby use a true power

constraint. (A-2) then becomes RN = I + S, and the capacity is as given

in Theorem 1; this agrees with the referenced results in [4].

Ir.
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Applications and Extensions

The results given here provide a complete and general solution to the

information capacity problem for the Gaussian channel without feedback,

so long as the constraint can be given in terms of any covariance (or

RKHS norm). Moreover, the formulation of the problem as developed here,

and the availability of these results, are already leading to a number

of related results, and additional applications and extensions seen, likely.

For example, it is well-known that feedback does not increase infor-

mation capacity of a large class of matched Gaussian channels, including

the "white noise" (Wiener process as noise) channel [61, [151. It can be

shown, using the results given here, that capacity is increased by feedback

for a large class of mismatched channels, thus validating a long-held conjec-

ture. In another direction, as discussed above, these results enable one

to analyze jamming channels when information capacity is used as the cri-

terion. Other related results can also be obtained, based directly or

indirectly on the formulation and results given here. Examples include

capacity-per-unit time for mismatched channels with and without feedback,

coding capacity for various types of channels, and new relations between

optimum filtering and optimum transmission in the Shannon sense.

The framework used here requires that the signal and noise sample

) functions lie in a real separable H-ilbert space. This is easily extended

to separable Banach spaces, such as C[0,1] (see [1, p.881).
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Append L'x

Proof of Lemman 1: Define f R ' '  R by f = log ' Yn Yn m is ton=1

be maximized subject to the constraints

g(y) = Yn - P < 0

1-
,h'-(Y) -Yi < 0, i , .

This is a constrained optimization problem with objective function fm which is

strictly concave over the convex set {Z in R' Zi >0, i = 1,... ,M}. Moreover,

each constraint function is linear. Thus, a solution to this problem will define a

unique global maximum for f il[14]. In order that y* be this unique solution, it is

necessary and sufficient that the following set of equations be satisfied [141:

, + 5-a. = 0 i = 1,.. ,M (a-i)
Yi 1

n Y;.1 l

-y * 0, "* = 0, i = 1 .. (a-3)

for some set of non-positive real numbers {[,al1 C .

r irst, attempt to obtain a solution by setting a1 = a 2 = = = 0.

This requires (-i+yt) = -1 for i = 1,...,M' thus,

IM
S , a = ( Y + E yi)/M

,.I i 1 1 n1i

for n = 1,2,...,M. This definition of y* and the constraints (a-3) require that

M N1
I>4+ Yi y

for n M; this inequality is satisfied for all n 5M if and only if it is satisfied

for n=M. Also, g-1 (y+ yi) for i M implies . 0, so that T vM P by2 iii 1 " 1
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M

y= (P + ZYn- MY)/ i<M.

K
If there exists K<M such that KyK < P+ EYi < (K+I)yK+, then

K -i
- constraints (a-l)-(a-3) are satisfied by choosing 8 -K[P+Yy.311

<"~r 01= ="' K = 0,

K
= P

= , i>K

y'* K-[P+ -Ky , i<K
iYn 1

"[-.- -K -1 -1
= -K[P+ y ] + y , i>K.

1 1 n1

- -)Thus,
sp M 2 K1  +
sup (n + n = (y + P)/(Kyn )

M 2 n" n n n n- 1 n:
{ E: X <P}):q " 1n-

K
where K-c < is the largest integer such that Eyi + P > KyK. The supremum is

11 --

attained by y* as defined above, or for

2 K"" X2 P+n ~ JK-Y n < K
S[P Eyn/K --y

= - n>K.

Proof of Lenmma 2: Note that fK() increases with decreasing yn for l< n< K,

K K K
using L ¥i +P > K Also, one can assume that Z ¥n y =1''n" To see this,

,I n=n n=

. Z

'aL,
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K K
suppose that E 1> I", Define admissible sequences (y , j > 1, asn=l n=l n ()

. follows. = l<n<K. Given (- J)), let pj be the largest integer

P_

n such that ( - 0. If no such integer exists for j =1, set
n= 11

p1 =
0. Define (¥(J+l)) by

,: y(j+l) = (j)np

n n n < p

Y(j) E. p < n <K

To see that (y(j I)) is non-decreasing, it suffices to check that

(.) Y(j~l) This holds because E. < -Y(J) -(J), noting that
+1j~ " - "pj+i jnj n -

)'Man c < O): p.<J<

y(J ad j <¥() X Also, j (j ')_-X )> 0 for
pjl +1 pj_ -- PJ - pj+l - pj~l" n=1 n -

ITo K: by the similar property for (Ys( j ) ) for J<p; by the definition of E.

K (j+l) K n

if J .pj. Finally, Z y ( )+p = (y.)+ P - (K -pj) Ej > KYK (K-pj )c-1 - " J

K j ) - Kc. = K-(j+) The sequence (y is thus admissible.

j n Kl

Since Pj+l > Pj the above procedure must terminate in at most K- p,

steps. Moreover, y ( j + l ) < ( j ) for I<n< K, so that fK[(nJ')] >K(nJ))]

n - nJNA>fK(Y I

K K K K
Assuming now that Z -y 1 X n' it is sufficient to show that n Y n > l7 Xn

1

with equality if and only if yn = K(n' I <n< K.

It 1" n 1 z Z
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K K

Define (30 )) = (y given (B(j}) such that n = 3) A and

%(N ), define ( n+l)) as follows. Let b. be the largest integer i

such that \; necessarily kb > bj) " Let a. be the largest integer
b 3

i such that k <. j )  Let A = min ( . - . Define the
1 1 b b a. a.

s;equence , (J+1) ) by

,0.+ ._ (j)n .. (+l) = n n € {aj ,bj }

-(j+') 0)
.- . a. ~ a.

K K K
".""K^(j+l) (j) (ln j+l) (j)

S..,Since(1learly 2 n = n' BS. > b -) > b and
4n=l n=l n - j j

(+) (J) and (n is non-decreasing, 0+l) ' J+). Thus,

,*1 3 3 J 3
'a (J+l) a.() n K] an + [ b (i)

.K :, 2 0 ((i) W 0)
,O', n nnaj ,bj i n n=l n0aj ,1bj in" b a

. ). s(J) > A if yn>\ n ; n> E > Y if yn< ; <x = x if Y
n n n n n-n n n n n n n,L<'3n=l

these relations holding for all j> 1. There are at most K elements (yn) such

that n €  and the nunber of such elements is reduced by at least one

whenever the sequence (0+l) is formed from (j)). The procedure must

nn

-- teninate in at most K steps, and will terminate when and only when a sequence

-4'
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* (i ()K K
( n ) is formed with ( ) = (Xn. Since E = ) An and

n=1

K U +1) K
S=n n for all j > 1, one has that fK(A) > fK(Y)

-4 -.

..-.

S..

.4-..

4-,.,

-. . .

11= n=
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